Ocean Wave Parameters Retrieval from Sentinel-1 SAR Imagery

نویسندگان

  • Weizeng Shao
  • Zheng Zhang
  • Xiaofeng Li
  • Huan Li
چکیده

In this paper, a semi-empirical algorithm for significant wave height (Hs) and mean wave period (Tmw) retrieval from C-band VV-polarization Sentinel-1 synthetic aperture radar (SAR) imagery is presented. We develop a semi-empirical function for Hs retrieval, which describes the relation between Hs and cutoff wavelength, radar incidence angle, and wave propagation direction relative to radar look direction. Additionally, Tmw can be also calculated through Hs and cutoff wavelength by using another empirical function. We collected 106 C-band stripmap mode Sentinel-1 SAR images in VV-polarization and wave measurements from in situ buoys. There are a total of 150 matchup points. We used 93 matchups to tune the coefficients of the semi-empirical algorithm and the rest 57 matchups for validation. The comparison shows a 0.69 m root mean square error (RMSE) of Hs with a 18.6% of scatter index (SI) and 1.98 s RMSE of Tmw with a 24.8% of SI. Results indicate that the algorithm is suitable for wave parameters retrieval from Sentinel-1 SAR data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Performance of Cryosat-2 Sar Mode over Water Surfaces

This paper presents analyses of L1B waveforms in SAR mode and Low-Rate Mode (LRM) over water surfaces from numerical simulations from the CryoSat Mission Performance Simulator (CRYMPS) and from CryoSat-2 satellite measurements. This work was performed as part of the ESA project "Development of SAR Altimetry Studies and Applications over Ocean, Coastal zones and Inland waters (SAMOSA)". The proj...

متن کامل

Ocean Wave Parameters Retrieval from TerraSAR-X Images Validated against Buoy Measurements and Model Results

An ocean surface wave retrieval algorithm, Parameterized First-guess Spectrum Method (PFSM), which was initially developed for C-band Synthetic Aperture Radar (SAR), is modified to extract wave parameters from X-band TerraSAR-X (TS-X) images. Wave parameters, including significant wave height (SWH) and mean wave period (MWP) were extracted from nine TS-X HH-polarization images and were compared...

متن کامل

An assessment of Sea Ice Extent Retrieval Based on HY-2A Scatterometer Data Using Other Satellite Products

A sea ice extent retrieval algorithm over the polar area based on scatterometer data of HY-2A satellite has been established. Four parameters are used for distinguishing between sea ice and ocean with Fisher’s linear discriminant analysis method. The method is used to generate polar sea ice extent maps of the Arctic and Antarctic regions of the full 2013-2014 from the scatterometer aboard HY-2A...

متن کامل

On Surface Wind Speed Retrieval from Sar Imagery in West Pacific Ocean

With the development of climate change and global warming, more and more severe tropical storms, hurricanes and typhoons tend to emerge[nature], leading devastating threat and damage to human lives and social productions. Accurate forecasting of storm track and intensity is of vital importance to help evacuation and hence decrease losses. However, the accuracy of storm forecast heavily depends ...

متن کامل

A Pararametric Inversion Scheme for the Sar Retrieval of 2-d Ocean Wave Spectra

A parametric algorithm is presented to estimate two-dimensional ocean wave spectra from ENVISAT ASAR wave mode data on a global scale. The retrieval scheme makes use of prior information taken from numerical wave models. The Partition Rescale and Shift algorithm (PARSA) is based on a partitioning technique, which splits an a priori wave spectrum into its wave system components. Integral paramet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016